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o The temperature was governed by three dimensionless similarity parameters.
o The model predictions agreed well with temperature measurements from the literature.
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merical simulations.

This study presents a first-order thermal analysis for electric double layer capacitors (EDLCs). It is based
on the lumped-capacitance approximation and accounts for both irreversible and reversible internal heat
generation. A simple analytical expression for the overall temperature rise during galvanostatic cycling
was derived. A scaling analysis was performed and demonstrated with experimental data collected from
commercial EDLCs. This thermal model enables rapid estimation of reversible heat generation and
prediction of the temperature evolution in EDLCs without performing computationally intensive nu-

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Electric double layer capacitors (EDLCs) physically store electric
charge within the electric double layer (EDL) forming at the mes-
oporous electrode/electrolyte interface. They are promising elec-
trical energy storage devices filling the gap between batteries and
conventional dielectric capacitors [1,2]. EDLCs offer significantly
larger power densities, longer cycle life, and higher cycle effi-
ciencies than batteries, while still offering higher energy densities
than conventional capacitors [1-5].

During operation, heat is generated within EDLCs, resulting in
temperature rise in the device [2—6]. The heat generation rate and
temperature changes depend on the design, materials, and oper-
ating conditions of the cell [3]. Elevated temperatures have detri-
mental effects on EDLCs including (i) accelerated ageing [2—7], (ii)
increased self-discharge rates [2,4—6], and (iii) increased cell
pressure [6]. Thermal modeling can be used to predict EDLC
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operating temperatures and develop thermal management strate-
gies to avoid these harmful effects.

The present study aims to develop a first-order thermal model
and the associated scaling analysis to predict the general thermal
behavior of EDLC devices. Scaling analysis has been widely used in
physics and engineering analyses of complex systems. It reduces
the number of independent parameters to be considered in the
analysis and facilitates the development of widely-applicable
thermal design rules [8]. Model predictions were compared with
experimental measurements on commercial EDLCs reported in the
literature [4,5].

2. Background
2.1. Experimentally observed thermal behavior of EDLCs

Experimental studies have investigated the thermal behavior of
commercial EDLCs [3—6,9] and lab-built EDLC cells [10,11] sub-
jected to galvanostatic cycling under current +Is. They observed an
overall temperature rise from cycle to cycle proportional to 2 and
attributed to irreversible Joule heating [3—6,9—11]. In addition,
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Nomenclature

A external surface area (m?)

C capacitance (F)

Cin heat capacity (J/K)

e elementary charge (C)

h average convective heat transfer coefficient (W/m? K)
Is electric current (A)

kg Boltzmann constant (J/K)

ne number of charge/discharge cycles
0 heat generation rate (W)

R electrical resistance (Q)

Rin thermal resistance (K/W)

T temperature (K)

To initial temperature (K)

To ambient temperature (K)

t time (s)

tc cycle period (s)

Vo volume of electrolyte (m?)
Vs volume of Stern layer (m?)

Greek symbols

« semi-empirical parameter characterizing reversible
heating (V)

Th dimensionless thermal time constant

Ay electric potential window (V)

Vs voltage across EDLC (V)

Superscripts and subscripts

* refers to dimensionless variable

irr refers to irreversible heat generation
rev refers to reversible heat generation

superimposed temperature oscillations at the same frequency as
the charge—discharge cycles were observed and attributed to
reversible heating [4,9—11]. The reversible heat generation rate was
empirically found to be exothermic during charging, endothermic
during discharging, and proportional to the current I [4,11].

2.2. Thermal models of EDLCs

Previous EDLC thermal models typically predicted the temper-
ature of the device by solving the transient heat diffusion equation
in one [12], two [5,9], or three dimensions [10,13,14]. Guillemet
et al. [2] solved the two-dimensional steady-state heat diffusion
equation to predict the steady-state local temperature and ignored
temperature oscillations due to reversible heat generation. Chiang
etal. [15] predicted the temporal temperature evolution of an EDLC
accounting for reversible heat generation but neglecting spatial
temperature variations. Other studies have employed the electric
circuit analogy [2,6,7]. Most of these studies treated EDLCs as “black
boxes” characterized experimentally to retrieve parameters
necessary for the thermal models [2,5—7,13,14]. The heat genera-
tion rate was prescribed as either (i) uniform throughout the entire
device [5,6,9,10,15], (ii) uniform in the “active components,” i.e., the
electrodes and separator [ 13,14], or (iii) as having different values in
the current collectors, electrodes, and separator [2]. The irreversible
heat generation rate was either imposed as an input parameter
[2,5,10,13] or predicted as Joule heating (in W) equal to I2R, where R
was the experimentally measured resistance of the EDLC cell
(4,6,7,14,15].

Most existing thermal models ignored reversible heat genera-
tion and typically did not consider in detail the electrochemical
phenomena occurring inside the device [2,5,6,10,13,14]. However,
Schiffer et al. [4] developed an expression for the reversible heat
generation rate Q,e, based on estimated changes in the entropy of
the ions due to electric double layer formation. Their derivation
approximated the EDL as a monolayer of ions and assumed that the
capacitance was independent of the cell potential. The reversible
heat generation rate (in W) was expressed as [4]

Orey = fz%m(‘%)c% _ 72%"3111(%)15(0 (1)
where T is the temperature, kg is the Boltzmann constant, and e is
the elementary charge. The cell capacitance, cell voltage, and cur-
rent were denoted by C, ys, and I, respectively. The total electrolyte
volume and the Stern layer volume were given by Vs and Vj.
However, the value of Vs/Vp is difficult to evaluate for porous

electrodes. Instead, it is often used as a fitting parameter. None-
theless, the expression of Qe, given by Equation (1) was later
adopted by other thermal models [7,9,15].

In a recent study [12], we derived a local thermal model from
first principles, elucidating the origin of reversible heat generation
and predicting both the local irreversible and reversible volumetric
heat generation rates within binary and symmetric electrolytes.
The model was solved for coupled electric potential, ion concen-
trations, and temperature during galvanostatic cycling of a ther-
mally insulated cell with planar electrodes. Predictions of
temperature evolution under various conditions showed remark-
able qualitative resemblance to experimental data [4,9,12].
Although entropy changes contributed to reversible heating, the
expression for Q, suggested by Equation (1) was found to be
inconsistent with that predicted by first principles [12].

Predicting the temperature field in actual EDLC devices using
our model [12] would require significant computing resources
given the complexity of actual porous electrode architectures.
Instead, developing a simple engineering thermal model for
actual EDLCs would provide a simplified alternative and a
convenient engineering tool to rapidly predict the thermal
behavior of EDLCs. Scaling analysis can further simplify the
analysis to obtain thermal design rules for actual devices. In this
study, a lumped-capacitance model of EDLCs subjected to galva-
nostatic cycling was developed accounting for both irreversible
and reversible internal heating.

3. Analysis

The following assumptions were made: (1) the device proper-
ties were constant, (2) the thermal resistance to heat transfer be-
tween the EDLC and its surroundings was constant, and (3)
temperature gradients within the device were small compared to
that between the EDLC and its surroundings, so that lumped-
capacitance analysis was appropriate. In fact, for large cycling cur-
rents, the measured temperature difference between the outer
surface of commercial devices and their surroundings was signifi-
cantly larger than the temperature difference inside the device
[5,6].

3.1. Dimensional energy balance

Thermal energy balance performed on the entire EDLC device
yields the governing equation for its temperature T(t) expressed
as [8]
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dT

Cnge = Q0 1]

Re, (2)
where Cy, is the heat capacity of the device (in J/K) and Q(t) is the
internal heat generation rate (in W), including both irreversible and
reversible heating. The second term on the right-hand side of
Equation (2) represents the rate of heat transfer (in W) from the
device to its surrounding environment at temperature T., charac-
terized by the thermal resistance Ry, (in K/W). The latter may be
expressed as Ry, = 1/hA, where h is the average convective heat
transfer coefficient (in W/m? K) and A is the external surface area of
the device (in m?).

The total heat generation rate consists of irreversible and
reversible contributions, i.e., Q(t) = Qi (t) + Qrey(t). During gal-
vanostatic cycling, the current I(t) is a square signal of magnitude I
with cycle period t.. Then, the irreversible heat generation rate is
constant and equal to Q;, = IR, where R is the electrical resis-
tance of the EDLC [4,11,12]. As previously mentioned, the reversible
heat generation rate is exothermic during charging, endothermic
during discharging, and proportional to Is [4,11,12]. Here, it is
assumed to be a square wave expressed as

) [ +als during charging
Qrev(t) = {70515 during discharging ©)

where « is a positive semi-empirical parameter specific to each
device and expressed in V.

Finally, Equation (2) is a first-order, linear ordinary differential
equation (ODE) requiring one initial condition. Here, the EDLC'’s
initial temperature was assumed to be equal to Ty, i.e., T(t = 0) = Ty.

3.2. Scaling analysis

The governing Equation (2) was non-dimensionalized using the
dimensionless variables

r :ti and T(t) = 1O =To (4)
c I2Rt. / Cn

The time t was scaled by the cycle period t., while the temperature
change T(t) — To was scaled by the temperature rise per cycle
associated with the irreversible heating and expressed as
Qirete/Cin = BRtc/Cyp.

Substituting Equation (4) into the energy conservation Equation
(2) yields the governing equation for the dimensionless tempera-
ture T*(t*)

dre . T()-TL 4
der — 1 _T+Qrev(t ) (5)

Here, T% = (Tw — Tg)/(I2Rtc/Cy,) is the dimensionless ambient
temperature. The dimensionless thermal time constant is defined
as 1, = RynCin/tc, where the thermal time constant RynCen char-
acterizes how rapidly the EDLC temperature responds to changes in
its thermal environment [8]. Finally, the dimensionless heat gen-
eration rate Qo, = Qrev/Qirr = +a/IsR represents the ratio of the
reversible to the irreversible heat generation rates. The initial
condition is expressed in dimensionless form as T*(0) = 0.

The dimensionless ODE given by Equation (5) can be solved to
yield the following expression for the dimensionless temperature

-
T*(t") = (v, +T%) (1 —e v/ f:h> +e /T / et/ Qr,, (t)dt.
0

(6)

3.3. Irreversible and reversible temperatures

Based on the superposition principle, the temperature T(t) may
be viewed as the sum of two contributions associated with irre-
versible and reversible heat generation so that T(t) = Tiy(t) + Treu(t).
The overall temperature Tj.(t), resulting from Qirr, accounts for the
temperature rise from cycle to cycle, while the reversible temper-
ature oscillations Trey(t) result from Q,e,. These contributions can
be expressed in dimensionless form as

Tio(t) = B0 10 ang 1) = 1B 7)
I2Rt, / Cin 2Rt / o

For an EDLC cooled by convection, Tj., is expressed as

Tinlt) = (g +T2) (1 - /) (8)

and is governed by two dimensionless similarity parameters,
namely, 7}, and T¢,. Over time, T;;. approaches a steady-state value
given by T;: (t*— ») = 133, + T5, . In dimensional form, Ti;(t) can be
written as

Tie(t) = To + (ISZRRth + T — TO) (] - e*f/Rtthh>. (9)

Thus, under steady-state conditions, the irreversible temperature is
expressed as Ty (t— ©) = RyyI2R + Tw. Subtracting Equation (8)
from Equation (6) yields

.
To () = et/ / e /% Qe (£7)dE. (10)
0

3.4. Perfectly insulated EDLC

In the limiting case of a perfectly thermally insulated EDLC, R,
and tj;, approach infinity. Then, tj; > t* and e /th=1—t* /T SO
that the overall dimensionless temperature rise is linear with t* and
given in dimensionless and dimensional form by
2R

and Ty, (t) = To+2—t (11)

* () = t* .
) Cen

irr

Similarly, the dimensionless reversible temperature can be
expressed as

:t ’ Qrev

(t" — ne) 0<(t"—ng)<1/2
Tey(t") =

- (12)
i’Q;ev

[(nc+1)—t] 1/2<(t*—nc) <1

where ne = 0, 1, 2... is the number of completed charge—discharge
cycles. Here, the positive and negative signs correspond to cycling
starting with a charging or a discharging step, respectively. In
dimensional form, Tye\(t) can be expressed as

:I:—OJS (t —ncte) Nete <t < (nc+1/2)tc
Cn
Trev(t) = al
(e + Ve — 1] (ne+1/2)te < £ < (e + Die.
th

(13)

3.5. Method of solution

The dimensionless temperature T*(t*) accounting for reversible
heat generation was evaluated by numerically solving Equation (5)
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using an explicit third-order Runge—Kutta method [16]. The solver
adjusted the time step to satisfy specified relative and absolute
tolerances. It compared the estimated error associated with T*(t*)
to these tolerances at each time step. The convergence criterion was
defined such that the relative error in the dimensionless temper-
ature T* was less than 0.5% when dividing both tolerances by two.

3.6. Experimental data

Table 1 summarizes the values of the capacitance C, electrical
resistance R, heat capacity Cy,, and thermal resistance Ry, of com-
mercial EDLCs whose thermal behaviors have been investigated in
the literature [4—6] including Maxwell BCAP1500 [17], Maxwell
BCAP0350 [18], and Nesscap ESHCP-5000C0-002R7 [19]. Note that
Cin for the Nesscap 5000 F cell was measured experimentally and
reported in Ref. [4]. The Maxwell EDLCs were cooled by natural
convection in air at T [5,6] while the Nesscap cell was thermally
insulated [4]. Table 1 also provides the operating conditions
including the current I;, potential window Ay, initial temperature
To, and ambient air temperature T, used in three experimental
studies reported in the literature [4—6]. The cycle period t. was
estimated from the device capacitance C, the potential window Ay,
and the current Is according to t. = 2CAy/Is [4]. Experimental data
from these different studies were used to validate the present
model and the associated scaling analysis.

4. Results and discussion
4.1. Parametric study

Fig. 1(a) shows T*(t*) predicted by solving Equation (5) and
T;:.(t*) predicted by Equation (8) as functions of ¢* for 7}, ranging
from 10 to « with TY, = 0. The cycles started with a charging step
and Q:e\, was equal to 5. In all cases, the temperature T*(t*)
featured nearly triangular temperature oscillations around Tj,, as
predicted by Equation (12) in the limiting case of ;;, approaching
infinity. For finite values of 7y}, Tj: initially satisfied T;; (t* =0) =t*,
and T;;. approached the steady-state value Tj; (t* — ») = T% + 13,
as convective heat losses increased due to the increasing temper-
ature difference between the device and the surroundings. In other
words, in the oscillatory steady-state regime, the rate of heat loss to
the surroundings balances the irreversible heat generation rate.

Table 1

Properties of commercial EDLC devices and galvanostatic cycling conditions used in
experimental studies [4—6]. The experimental data were used to demonstrate the
present analysis and scaling.

Manufacturer  Units Maxwell Tech. Maxwell Tech.  Nesscap Co.
[17] [18] [19]
BCAP1500 BCAP0350 ESHCP-5000C0-

002R7

C (F) 1500 350 5000

R (mQ) 047 32 0.33

Cen g/x 320 60 1118 [4]

Ren (K/wW) 3.2 109 o [4]

o (V) 0.04—0.07 0.1-0.2 0.06

Exp. studies Al Sakka et al.  Gualous et al. Schiffer et al.
(6] [5] [4]

Is (A) 75 30 25-100

Ay (V) 1.35 1.25 1-2

te = 2CAY/Is (s) 54 29 100—400

To (°C) 17.5 20 25

T (°C) 17.5 20

Dimensionless similarity parameters

LA 19.0 224 %

T, 0 0 —

TH(t" — =) 19.0 224 o

40
(@)

dashed lines: Tj,r(t*)
7.20,10,=5 ]

o

(%)
(=}
]

s

7,750

*

Dimensionless temperature, T
= S
[l [l

T TT T

0 "'""'I"'"""I""""'I"""'"I""""'
0 10 20 30 40 50
Dimensionless time, ¢
7 T
(b) ]
6 ]

10) 2=2.5

w
. 5L il
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g E
< 44
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a2 I ]
g 3T .
3 N -
2 24 ;
% 7 =5, T; =0 ]
s 11 o A A h
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= “ ]
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””” 7,(0) ]
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. . . *
Dimensionless time, ¢

Fig. 1. Dimensionless temperature T*(t*) predicted by solving Equation (5) and
dimensionless irreversible temperature T;; (t*) given by Equation (8) as functions of t*
fqr (a) different values of tj; with T, = 0 for ‘Q:ev = 5 and (b) different values of
‘Q;e‘,‘ for T;, = O and 1}y, = 5..

th

This relationship could be used in practice to determine the values
of 7}y, and Ry, = tcty, /Cypy Of actual EDLCs.

Similarly, Fig. 1(b) shows T*(t*) predicted by solving Equation (5)
and Tj, (t*) given by Equation (8) as functions of t* for 7j;, = 5 and
T2, = 0.Here, |Q .,
with either a discharging or a charging step. The local maxima and
minima of T#(t*) occurred at the end of the charging steps and of the
discharging steps, respectively. In cases beginning with a charging
step, T*(t*) initially increased and oscillated within the envelope
() < T(E) < Toglt) + | Qrey
Equation (8). By contrast, in cases beginning with a discharging step,
T*(t*) initially decreased, oscillating within the range T;; (t*) > T*(t*)

> Ti*rr(t*) - ‘Qrev
steady-state, all cases fell within the envelope T} (t*) — ‘Q:e\,
T(t) < Ti(t) + |Qrey
dimensionless temperature oscillations AT}, was equal to
|Qrey
trated in Fig. 1(b). In dimensional form, it is expressed as AT;ey = alstc/
2Cih. In fact, this provides a simple and convenient way to estimate

the coefficient of proportionality « associated with reversible heat
generation directly from experimental data as & = 2ChATrev/Istc.

was equal to either 2 or 5 and the cycle started

/2 where T (t*) is given by

/2. However, as T*(t*) approached oscillatory
[4<

/4. Interestingly, the amplitude of the

/2 = «a/2IsR at all times and for all cases considered, as illus-
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4.2. EDLCs cooled by natural convection

Fig. 2 shows the temperatures T(t) as a function of time t
measured by Gualous and coworkers at the outer surface of (a) a
1500 FEDLC [6] and (b) a 350 F EDLC 5] galvanostatically cycled at
+75 A and 430 A, respectively. These Maxwell Technologies EDLCs
were cooled by natural convection in air at T of 20 and 17.5 °C,
respectively [5,6]. Both figures display a clear overall temperature
rise with small temperature oscillations. Here also, the tempera-
ture rose quickly at the beginning of the test and then approached
an oscillatory steady-state as the rate of convective heat loss
balanced the irreversible heat generation rate. Fig. 2(a) and (b)
also plot T predicted by Equation (9) using properties summa-
rized in Table 1 as well as predictions for thermal resistance
Ren, £+ 10% to account for the possible uncertainty in the reported
values of Ry,. In both Fig. 2(a) and (b), experimental data fell
approximately between the temperature predictions of Equation
(9) using Ry, + 10%.

Fig. 2(c) and (d) plot the data shown in Fig. 2(a) and (b) in terms
of dimensionless temperature T#(t*) and time t*. They also show the
overall dimensionless temperature rise T (t*) predicted by Equa-
tion (8). Here also, predictions for T;;.(t*) were in good agreement
with scaled temperature measurements for both EDLCs. In addition,
the dimensionless temperature oscillations were small compared
to the overall dimensionless temperature rise, i.e., Q ., /2 Was small

443

compared to 7, + T, . It was difficult to accurately quantify the
temperature oscillation amplitude AT, in order to retrieve a.
However, from visual inspection, AT}, ranged approximately be-
tween 1/2 and 1 for both EDLCs, yielding « between 0.04 V and
0.07 V for BCAP1500 and 0.1 V and 0.2 V for BCAP0350. This cor-
responded to a dimensional temperature oscillation amplitude
ATey between 0.2 K and 0.4 K for BCAP1500 and between 0.7 K and
1.4 K for BCAP0350.

4.3. Thermally insulated EDLC

Fig. 3(a) shows the temperature T(t) measured at the surface of
a thermally insulated 5000 F EDLC (ESHCP-5000C0-002R7 by
Nesscap Co.) as a function of time t. This EDLC was cycled galva-
nostatically at currents I between 25 and 100 A and cycle periods
tc ranging from 100 to 400 s [4]. The electrical resistance R, the
heat capacity Cy, the thermal resistance Ry, and the ambient
temperature T, remained the same for all five cases and are
summarized in Table 1. The temperature featured oscillations
superimposed over an approximately linear temperature rise of
slope IZR [4].

Fig. 3(b) shows the same data as in Fig. 3(a) but in dimensionless
form. The scaled data for all five cases approximately collapsed
around an overall temperature rise predicted by T = t* and cor-
responding to the limiting case when 1} or Ry, approached infinity.

28 T T T T T T T 55 — 777
b
© R R F10% ...
50 4 ey .
6 6 I /./,/// ______________
o\/ &/45 T ./’// /.Rrh-l()% ]
&~ ~ ' LG
< o400+ 2 7
] f Y4
= = B Y /4
; ; 35+ Va _
= = 7,
@ @ | 2
=2 =
= E30+ -
5 5
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— Outer surface [6] 254 —— Outer surface [5] ]
184 Prediction [Equation (8)] H Prediction [Equation (8)]
" [l " [l " [l 20 [l [l " [l " [l " [l
I I I I I I I I
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Fig. 2. Measured temperature T(t) as a function of time t at the outer surface of (a) a 1500 F EDLC cycled at +£75 A (Fig. 7 of Ref. [6]) and (b) a 350 F EDLC cycled at +30 A (Fig. 8 of
Ref. [5]), as well as (c) and (d) the corresponding dimensionless temperatures T*(t*) as functions of dimensionless time t* and the predictions by Equation (8) using data in Table 1.
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Fig. 3. (a) Measured temperature T(t) at the surface of a thermally insulated Nesscap
5000 F EDLC as a function of time t for different values of current I and cycle period t.
(Figs. 8 and 10 of Ref. [4]) and (b) the corresponding dimensionless temperature T*(t*)

as well as T;;, (t*) predicted by Equation (11) as functions of dimensionless time t*.

As observed in Fig. 1, the initial slope dT;. /dt* in the experimental
data was equal to about 1. However, as T* increased, the overall
slope of the measured T* slowly decreased. This can be attributed to
heat losses to the surroundings due to imperfect thermal insu-
lation. In fact, Ry and tj;, were large but finite, and T*(¢*) would
eventually approach an oscillatory steady-state around the
dimensionless temperature T;; (t*— o) = 7 + T3, similar to the
behavior shown in Fig. 1. This behavior was more apparent at
smaller currents when irreversible heat generation was smaller. For
larger current I, heat generation was large compared with
convective heat losses to the surroundings in the time frame for
which data are available. Unfortunately, the steady-state EDLC
temperature could not be evaluated because the actual values of Ry,
and t;;, were not measured. It is also interesting to note that, by
scaling t by the cycle period ¢, the temperature maxima and
minima occurred at the same dimensionless times t*.

Fig. 4 plots the same data as in Fig. 3(a) separately in terms of
dimensionless temperature T*(t*) as a function of t* for cycles

beginning with a charging step with (a) Is =25 A, (b) ;=50 A, and
(c)Is=100 A aswell as (d) a case beginning with a discharging step
with I = 100 A. It also plots the predictions for T*(t*) obtained by
numerically solving Equation (5). As previously discussed, the
dimensionless temperature oscillation amplitude was equal to
ATr*ev = ‘Q:ev
experimental data with [ = 25 A [Fig. 4(a)]. Thus, the average value
of AT}, was estimated for this dataset to yield the semi-empirical
constant & = 2AT},,IsR = 0.06 + 0.012 V with 95% confidence in-
terval. This value of « was of the same order of magnitude as those
estimated for the other EDLCs. In addition, it was the same for all
datasets considered in Fig. 4, since they were collected with the

/2 = «a/2IR. These oscillations were the largest for

same device. The corresponding values of ‘Q:e‘, ranged from 1.8 to

7.3 as the current Is decreased from 100 A to 25 A. This explained
why the temperature oscillations shown in Fig. 4 were significantly

larger than those observed in Fig. 2, when ’Q:ev was estimated to

Qrev
EDLC were likely due to (i) smaller cycling currents and/or (ii)
smaller resistance R (Table 1).

Overall, predictions of T*(t*) closely resembled the measured
behavior. However, there was a temporal offset between the pre-
dicted and measured temperature oscillations. In fact, Fig. 4 in-
dicates that the local maxima and minima of the measured T* were
shifted towards later dimensionless times t* compared with pre-
dictions obtained by solving Equation (9). This effect was also
observed in our previous first-principles modeling study [12]. The
delay was attributed to heat diffusion from the electrode/electrolyte
interface to the bulk electrolyte [12]. Indeed, reversible heat gen-
eration occurs mainly near the electrode surface where the electric
double layer forms and is transported by conduction through the
electrolyte and electrode to the outer surface of the EDLCs.

Moreover, the measured T*(t*) was larger than the model pre-
dictions for cases beginning with a charging step [Fig. 4(a) and (b)]
and smaller for cases beginning with a discharging step [Fig. 4(d)].
This can also be attributed to heat diffusion inside the EDLC. In fact,
our previous study [12]| showed that the temperature oscillation
amplitude decreases with increasing distance from the electric
double layer. Thus, retrieving the reversible heat generation rate
and the parameter « from surface temperature measurements
underpredicted its actual value since temperature oscillations were
larger inside the device.

Finally, the present model predicts the main features of the
experimental data quite well. Fig. 5 summarizes the procedure to
predict the overall temperature rise Ti(t) and the temperature
oscillation amplitude ATiey. It provides an excellent first-order es-
timate of the EDLC temperature behavior without relying on
detailed and computationally intensive numerical simulations. In
addition, it offers a simple and convenient method for retrieving
the thermal resistance Ry, and the semi-empirical parameter « for
reversible heat generation from experimental temperature mea-
surements. Note that « is the only empirical parameter retrieved
from temperature measurements. All the other input parameters
can be obtained from product data sheets. In addition, the model’s
irreversible temperature predictions agreed well with experi-
mental measurements reported in the literature for EDLCs of
different sizes and manufacturers. This suggests that the present
model is robust and broadly applicable.

range between 1 and 2. The larger values of

in the Nesscap

5. Conclusion

This study developed an engineering thermal model accounting
for both irreversible and reversible heat generation to predict the
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Fig. 4. Dimensionless temperature T*(t*) as a function of dimensionless time t* based on experimental measurements at the EDLC outer surface [4] and predicted by solving

Equation (5) for a thermally insulated EDLC cycled at (a) I =25 A, (b)Is=50 A, and (c)Is=

discharging step.
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C,R,R,,C,,and I,t.,T, ,and T,
I |
v
Dimensionless parameters
R,C . T, -T, .
L T = o Q= + >
t. IRt /C, IR
|
v ¥
Temperature rise Temperature oscillations
N * i, .
T, = (5, + T =6 ") AT G| 2
T, (@t —>0o)=1,+T,
I I
¥
Conversion to dimensional variables
. . . I’Rt,
(=01, T,(0)=T, ()" +T,, AT, =AT, =
th th
Results
T,,(t)and AT,

Fig. 5. Procedure to estimate temperature evolution of an EDLC.

100 A beginning with a charging step as well as (d) cycled at I; = 100 A beginning with a

temporal evolution of temperature in EDLC devices during galva-
nostatic cycling. The dimensionless temperature T*(t*) was gov-
erned by three dimensionless similarity parameters, namely,
T Th, and Q:few characterizing the rate of heat transfer to the
surroundings, the ambient temperature, and the reversible heat
generation rate, respectively. Temperature predictions showed
good agreement with experimental data obtained from different
commercial devices and reported in the literature [4—6]. This first-
order model has the advantage of predicting the temperature
evolution of actual EDLC devices without relying on computation-
ally intensive numerical simulations. It can be used in designing
thermal management strategies for EDLCs.
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